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Abstract. The star cluster expansion for the specific heat of a three-dimensional Ising 
ferromagnet is described. The classification of stars by ascending number of edges is studied 
and a canonical description developed. The construction of a general star-graph list for 
high temperature expansions is described. 

1. Introduction 

In this paper we describe a general cluster expansion for the high temperature specific 
heat of the Ising model of a ferromagnet. We have two main objectives in studying this 
expansion; first to derive as many terms as possible and use them to elucidate the 
critical behaviour of the specific heat and to evaluate it numerically for direct com- 
parison with experiment ; second to provide detailed configurational data for studies 
of the structure of the expansion. 

The expansion coefficients we have derived are given in previous papers (Sykes et a1 
1967, 1972a, to be referred to as I and 11) together with a numerical study; although 
convergence is slow it seems that reasonable estimates of the critical index (a) can be 
made and this is relevant to the theory of scaling (Fisher 1967, Kadanoff et a1 1967, 
Stanley 1971). Numerical representations have found application to experimental 
work (Wielinga 1968a, b, Blote 1972); certain compounds, notably Rb,CoCl,, fit the 
specific heat of the simple cubic Ising model very well. The structure of the expansion 
has been studied extensively by Domb (1970, 1972a, b). 

We follow I and I1 and write the configurational free energy of a lattice of N sites 
and Af edges in the form 

N In A(u) = N In 2 - Af ln(1 + v ) + N L ( u )  (1.1) 

where U = tanh K (the standard high temperature counting variable). The starting 
point of our treatment is the well known result that L(v) may be written as a cluster 
expansion. (For a general introduction see Domb 1960, in particular 5.2.10, Domb 
and Hiley 1962, in particular equation (31), Uhlenbeck and Ford 1962, Kubo 1962, 
Strieb et al 1963, Sykes et a1 1966, in particular 6 5 ,  Sykes and Hunter 1973, Domb and 
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Green 1973). We use the notation of Sykes et a1 (1966). Explicitly if we expand in 
powers of t' : 

L(U) = C a r v r  
r 

then 

G 

where the last sum is taken over all star graphs G with r edges, or less, (other than the 
single edge) that occur as sub-graphs of the lattice 9 and ( G ;  9) denotes the number 
of weak embeddings per site of G in 9 (that is the weak lattice constant of G in 9). 
The w,(G) are numbers, independent of 9, which we call the L weights of G. Since the 
summation is restricted to stars of r edges or less, wr(G) = 0 for r < e,  the number of 
edges in G. We call we(G), we+ l(G),  W , + ~ ( G )  the primary, secondary and tertiary weights 
of G respectively. 

The prescription for determining a, for a lattice L is thus conceptually simple : from 
a complete list of stars with r or fewer edges select those with non-zero weights and 
form the sum (1.3). However, the number of stars with r edges increases rapidly with r ;  
the scale of the problem may be judged from table 1. 

Table 1. 

r Number of stars Number of stars Number of stars 
with e = r with e <  r contributing to a, 

3 1 
4 1 
5 2 
6 4 
7 7 
8 16 
9 42 
10 111 
11 331 
12 1094 

1 
2 
4 
8 
1s 
31 
73 
184 
515 
1609 

1 
1 
1 
3 
4 
10 
19 
42 
86 
237 

To extend the expansion beyond r = 12 it is desirable to list and classify stars in 
some systematic way ; to do this we have modified and extended an earlier topological 
classification (Sykes et a1 1966). The restriction of the problem to a particular lattice 
results in some reduction in the number of stars that need be considered ; for example 
of the 1609 stars with e < 12 only 1548 are embeddable in the face-centred cubic lattice. 
A much greater economy will be achieved as r increases; it is trivially clear that for a 
loose-packed lattice only loose-packed stars need be listed. The problems of classi- 
fication and listing are considered in @ 3 and 4. 

In practice it is uneconomic to list all stars because of the large number of zero 
weights. We summarize in $ 2  the salient properties of the L weights. Since we are 
describing a large project we do not give an immense amount of detail; we make a 
large number of statements without proof and these will be readily understood by 
anyone familiar with the cluster technique. Justification may be found in the literature 
cited. 
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In $4 we describe the construction of complete lists of stars, in the appropriate 
format, for the more common crystal lattices. In considering the general problem of 
listing lattice constants we have not restricted the investigation to the free energy of 
the Ising model in zero field; we have made provision for studies of closely related 
problems which require data differing only in detail : for example the zero-field ex- 
pansion for the free energy of the spin CO Heisenberg model, the classical vector model, 
and the susceptibility of the Ising model. 

Once a list of stars has been compiled there remain the two problems of determining 
the lattice constants and the weights. In general the higher the connectivity of a graph 
the easier it is to determine the number of embeddings; at the same time problems of 
symmetry and weight are usually more complex. For example at r = 14 the star with 
the lowest connectivity is the polygon of 14 sides with a lattice constant of 8 798 329 080 
on the face-centred cubic lattice ; special methods are required to determine lattice 
constants of this size (Sykes et a1 1972b). At the other extreme there are some graphs 
of cyclomatic number 8 : 

whose weights are not easily obtained by elementary methods. 
The determination of the weights has been developed by Hunter (1967) and more 

recently by Domb (1972b); a summary, and a lead into the literature is given by Sykes 
and Hunter (1973). With the use of fast electronic computers the weights no longer 
present a serious problem. To count embeddings we have again largely relied on 
computers. Since the pioneer work of Rushbrooke and Eve (1959) and Martin (1962) 
many specialized techniques have been developed for this purpose. 

2. Properties of the L weights 

We begin by defining certain concepts (for a general introduction to the definitions of 
this section see Sykes et a1 1966). A terminology which distinguishes each separate 
concept precisely is cumbersome ; we are concerned both with linear graphs and graph 
topologies. These two concepts have many features in common and a certain over- 
lapping of terms is inevitable. It is convenient to distinguish a graph topology (or more 
simply a topology) and a linear graph (or more simply a graph). A graph topology is a 
set of nodes connected by bridges; the number of bridges incident upon any node is 
the valence of that node and, for a star, is always greater than 2. (The polygon cor- 
responds to the exceptional topology with no nodes.) If we introduce a metric by 
inserting on the bridges of a topology antinodes of valence 2 we obtain a (linear) graph 
which is a realization of the topology. To avoid confusion it is convenient to refer to 
the nodes and antinodes of the realization as vertices (or points or sites) and to each 
connection between two vertices as edges (or lines or bonds). The concept of valence 
is still applicable to a vertex; each vertex of valence 2 corresponding to an antinode, of 
valence more than two to a node; nodes are sometimes called the principal points of 
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a graph. The bridges of a graph are the chains of edges which connect the vertices of 
valence more than 2 (without passing through vertices of valence more than 2) and 
the length of the bridge is the number of edges in it. 

Nodes of odd valence (odd nodes) must occur an even number of times; nodes of 
even valence (even nodes) are unrestricted. Topologies all of whose vertices are even 
are of fundamental importance in series expansions for the Ising model in zero mag- 
netic field (Wakefield 1951, Rushbrooke and Eve 1962, Domb and Sykes 1957, Domb 
1960) ; we call such topologies no-field topologies and their realizations no-field graphs 
and use the abbreviation NF. 

Topologies with two, and only two, nodes of odd valence are of fundamental 
importance in series expansions for the zero-field susceptibility of the Ising model 
(Oguchi 1951, Sykes 1961); we call such topologies magnetic topologies and their 
realizations magnetic graphs and use the abbreviation MG. 

A topology with more than two odd nodes we call hypermagnetic and for n odd 
nodes we abbreviate this to HMn. Trivially HMO is equivalent to NF and H M ~  to MG but 
it is usually convenient to assume (consistent with the definition above) that n > 2. 

A further sub-classification can be made into categories dependent upon structural 
details of special relevance to the theory of L weights; if for a topology with 2m odd 
nodes (m + s - 1) is the least number of bridges that can be selected to connect the odd 
nodes in pairs we call s the category of the topology. A graph is of category s if its 
topology is of category s. For example a magnetic topology has m = 1 and for it to be 
first category the two odd nodes must be directly connected by a bridge. We illustrate 
in figure 1 particular examples of category 1 and 2. The fourth graph in figure 1 has 
category 2 because this gives (m + s - 1) = 3 and 3 is the least number of bridges that 
can be selected to connect the odd nodes in pairs. It is evident that 3 is sufficient and 
that 2 would not suffice. 

A 
Magnetic topology 

of category 1 

€B 
Magnetic topology 

of category 2 

Hypermagnetic topology Hypermagnetic topology 
of category 1 of category 2 

Figure 1. Examples of the sub-classification of graph topologies into categories. 

2.1. Primary weights 

We have defined the primary L weight of a graph of e edges to be its contribution to 
a, for r = e in (1.3). (Some authors have used the term entry parameter; a graph with 
non-zero primary weight has entry parameter zero.) The only graphs with primary 
weights are nolfield graphs; further two graphs which are homeomorphic have the 
same primary weight which is therefore a property of their topology. In other words, 
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the primary weight is not a metric property; it is independent of the lengths of the 
bridges. Primary weights are metric invariants or simply invariants (some authors have 
used the term topological invariant, but this is misleading). A few NF topologies have 
zero primary weight : for example 

and we call these cancellation zeros. They arise as a result of cancellation from different 
contributions to the coefficient; we know of no theory that would make it clear in 
advance that certain topologies are cancellation zeros. 

In general to develop (1.2) through v' we should consider all no-field graphs with 
e < r ; cancellation zeros may of course be ignored but for reasons stated in the intro- 
duction we have included them in our investigation. We illustrate in the appendix all 
the 53 no-field (NF) topologies of cyclomatic number 7 or less, together with their primary 
weights. There are 199 NF topologies of cyclomatic number 8 and we have enumerated 
all of these. 

2.2. Secondary weights 

The secondary L weight of a graph of e edges is its contribution to a, in (1.3) for 
r = e + 1. The only graphs with non-zero secondary weight are first category magnetic 
graphs. There is a further metrical condition that the bridge connecting the two odd 
vertices must be of unit length; this restriction is not very important in effecting 
economies since the first realization of any first category magnetic topology must 
always satisfy the metrical condition. Thus to develop (1.2) through vr we should 
examine all first category magnetic graphs with e < r - 1. There are a few first category 
magnetic topologies all of whose realizations have zero secondary weight (cancellation 
zeros). For example 

is a first category magnetic cancellation zero. Again for reasons stated in the intro- 
duction we have chosen to extend our investigation to include all magnetic graphs 
with e < r - 1. There are 112 magnetic topologies of cyclomatic number 6 and 601 of 
cyclomatic number 7, and we have enumerated all of these. 

2.3. Tertiary weights 

The tertiary L weight of a graph is its contribution to a, in (1.2) for I = e + 2 .  Con- 
tributions come from: (i) NF graphs (whose tertiary weight is a metric property); (ii) MG 
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graphs of categories 1 and 2;  (iii) H M ~  graphs of category 1. The first two groups have 
already occurred above ; to develop the expansion (1.2) through or we should examine 
all first category H M ~  graphs with e < r-2. The extension of these general rules to 
higher weights is straightforward but increasingly complex. 

2.4. General scheme 

It is possible to exploit the occurrence of cancellation zeros and metrical conditions to 
reduce to a minimum the number of graphs that need be considered; a very detailed 
treatment is required. However, the economy effected by most of these constraints is 
a very small part of the whole ; further, some of the constraints are specific to the Ising 
model (cancellation zeros) ; the metrical constraints are not so confined but only make 
a small economy. We have sought to achieve a list applicable to other problems and 
to effect worthwhile economies. From the above properties and considerations it 
should be clear that while extending (1.2) through U' we should investigate: 

(i) NF topologies and their realizations for e < r ;  
(ii) MG topologies and their realizations for e < r - 1 ; 
(iii) m 2 m  topologies and their realizations for e < r - m. 

Strictly we may exclude from (ii) magnetic topologies of category (s) greater than 1 ; 
these are only required for e < r -s. However by including them we form a list which 
can be used to derive the susceptibility through u r - l  (Oguchi 1951, Sykes 1961, Domb 
and Hiley 1962, Sykes et a1 1972a, b). 

3. Classification and listing of stars with a given number of edges (edge grouping) 

To classify and list star graphs with a given number of edges we follow Sykes et a1 (1966) 
and group homeomorphic stars together ; the idea is derived from the literature (Ford 
and Uhlenbeck 1957). For cyclomatic number 1 there is one topology (polygon) which 
has a unique realization for a given number of edges. For cyclomatic number 2 there is 
one topology, the theta topology which we illustrate in figure 2 (a). Any linear graph 
with this topology (a theta graph), that is a graph with two principal points connected 
by three distinct chains of edges (the bridges), is a realization of the topology. For 
example the two graphs illustrated in figure 2 (b)  and (c) are realizations of the theta 
topology. In fact, if we exclude multigraphs, they are the only possible realizations with 
six edges of this topology. In general we shall simply say that there are two theta graphs 
with six edges. 

(4) (b) (4 

Figure 2. (a) Theta topology; (b) and (c) theta graphs with six edges. 

It is possible to specify the realizations of a star S by labelling the bridges a, b, c, . . . 
and giving their lengths in some conventional order S(a, b, c,. . .). Such a notation 
always specifies the graph but it is possible for two specifications whose arguments are 
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permutations of one another to specify the same (that is an isomorphic) graph. A 
trivial example is provided by the theta topology: if the bridges are labelled in any 
order the realizations S(l, 2,3) and S(1,3,2) are clearly identical. For simple cases 
such ambiguities are readily removed ; for the theta topology it suffices to write S(a, b, c) 
with a < b < c for isomorphic theta graphs to have identical descriptions. 

For cyclomatic number 3 there are 4 star topologies and a convention for specifying 
their realizations has been devised (Sykes et a1 1966). We now describe a general con- 
vention, applicable to any star topology or graph, which provides a unique speci- 
fication which we have adopted as a canonical specification. A full mathematical treat- 
ment is given by McKenzie (1974a). 

The 4 star topologies of cyclomatic number 3 are illustrated in figure 3. If we label 
the N nodes 1,2,. . . , N the topologies may be specified by listing the B bridges that 
connect the nodes in ordered number pairs : 

Alpha 1 2  1 3  1 4  2 3  2 4  34 

Beta 1 2  1 2  1 3  2 4  3 4  3 4  

Gamma 1 2  1 2  1 3  1 3  23  

Delta 1 2  1 2  1 2  1 2  

(3.1) 

2 €"A0 1 4 1 3 2 (c) Gamma 3 (d )  Delta 1 

(a) Alpha (b )  Beta 
N = 4, B = 6 N = 4, B = 6 N = 3 , B = 5  N = 2 , B = 4  

Figure 3. The four-star topologies of cyclomatic number 3. 

The bridge specifications (3.1) can be regarded as forming (2B)-tuples. We take as a 
canonical description of each topology the minimum (2B)-tuple that describes it. We 
assume the general conventions for the ordering of n-tuples as self-evident ; a detailed 
treatment is given by Heap (1969, 1972). (The system of canonical descriptions we 
define is not the same as that used in these references.) 

The descriptions (3.1) are all canonical. Any other description results in a larger 
(2B)-tuple. For example it is evident that any other ordering of the bridges in (3.1) for 
the gamma topology will result in a larger (10)-tuple ; however the topology may be 
re-labelled in two other distinct ways : 

2 3 

which have minimum descriptions 1 2 1 2 1 3 2 3 2 3 and 1 2 1 3 1 3 2 3 2 3 respectively, 
both of which exceed that of (3.1). Thus the canonical description of the topology also 
defnes a canonical labelling. 
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To describe the realization of a topology we specify the lengths of the bridges in 
their canonical order. When more than one specification is possible we choose the 
minimum. For example, the graph : 

can be specified in accordance with (3.1) in eight ways: 

12 12 13 24 34 34 1 2 1 1 1 3 
1 2 1 1 3 1  
2 1 1 1 1 3  
2 1 1 1 3 1  
1 3 1 1 1 2  
1 3 1 1 2 1  
3 1 1 1 1 2  
3 1 1 1 2 1  

of these the first yields the least 18-tuple and is the canonical description. 
To summarize: we adopt as the canonical specification of a graph with B bridges 

the least (3B)-tuple that specifies the bridges and then their respective lengths in the 
same order. Under this regime isomorphic graphs have identical descriptions. 

The canonical specification has the merit that it is not necessary to introduce 
arbitrary conventions from time to time ; all that is arbitrary is introduced once for all 
in the definition. It is convenient for the handling of large numbers of topologies and 
realizations by electronic computers ; it is somewhat inconvenient for hand calculations. 
It is useful to have simple names for the topologies with small cyclomatic number. We 
give the canonical description of the 17 topologies with cyclomatic number 4 in table 2. 

Table 2. The star topologies of cyclomatic number 4 and their canonical descriptions 

Topology N B Canonical description 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 

6 9 12 13 14 25 26 35 36 45 46 
6 9 12 13 14 23 25 36 45 46 56 
6 9 12 12 13 24 35 36 45 46 56 
6 9 12 12 13 24 34 35 46 56 56 
6 9 12 12 13 24 35 35 46 46 56 
5 8 12 13 14 15 23 24 35 45 
5 8 12 12 13 14 25 34 35 45 
5 8 12 12 13 14 23 35 45 45 
5 8 12 12 13 13 24 35 45 45 
4 7 12 12 13 14 23 24 34 
4 7 12 12 13 14 23 34 34 
4 7 12 12 13 13 24 24 34 
4 7 12 12 12 13 24 34 34 
4 7 12 12 13 13 14 24 34 
3 6 12 12 13 13 23 23 
3 6 12 12 12 13 13 23 
2 5 12 12 12 12 12 
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The number of topologies increases rapidly with cyclomatic number. The 118 
topologies of cyclomatic number 5 have been described by Heap (1966, 1967), and the 
1198 topologies of cyclomatic number 6 by Heap (1969). The number of topologies of 
cyclomatic number 7 is not available; we have derived all 1201 topologies with six 
nodes or less. 

4. Construction of a star-graph list 

4.1. Format 

From the preceding sections the type of star-graph list required for the development of 
the specific heat expansion is clear ; there remain some problems of format and listing 
and finally that of closing the list by supplying the few remaining stars of high cyclo- 
matic number. The more common lattices that have been studied in critical phenomena 
fall into three groups : 

(i) Close-packed lattices : triangular, face-centred cubic, close-packed hexagonal. 
(ii) Loose-packed lattices : square, simple cubic, body-centred cubic. 
(iii) Very loose-packed lattices: honeycomb, diamond, white tin (ice) and the even 

more loosely-packed hydrogen peroxide and related structures. 
For lattices in the first group it is a practical proposition to list and count all real- 

izations of all topologies through r edges. For lattices in the second group only loose- 
packed realizations need be listed; if this is not done the number of zero lattice con- 
stants rapidly becomes prohibitively large. A loose-packed listing is still very in- 
efficient for lattices like the simple cubic and even more so for lattices in the third group. 
To obtain efficient listings it is necessary to eliminate realizations whose counts must 
be zero because of the lattice structure. Special techniques have been developed for 
this purpose (McKenzie 1974b). 

4.2. 

4.2.1. Closure of the list. In compiling a list of all stars with a given number of edges 
(and supplemented as specified in 9 3) we begin by an exhaustive enumeration of all 
the realizations of the possible topologies in order of ascending cyclomatic number. 
The procedure is limited by the fact that complete enumeration of topologies are not 
available beyond a certain cyclomatic number (currently 6 for all topologies, 7 for 
magnetic topologies and 8 for no-field topologies). Also for any fixed r the number of 
topologies becomes very large at the point where the number of realizations is small 
and the whole process becomes inefficient. For example to complete the listing of 
no-field graphs with e < 14 we need four graphs of cyclomatic number 8. These can 
be found by searching through the 119 topologies ; it is more convenient to exploit the 
fact that such graphs have only seven points and must occur in lists of stars grouped 
by vertices. We describe the technique in the next sub-sections. 

4.2.2. No-JieId graphs e < 14. We have illustrated in the appendix all the no-field 
topologies through cyclomatic number 7. To find all the remaining graphs we have 
used the seven-point stars in the seven-point graph list of F Harary and D W Crowe 
(1953, distributed privately), as corrected by Heap. Drawings of all the stars in the list 
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have been published by Hoover and de Rocco (1962). A graph of 14 edges and cyclo- 
matic number 8 must have seven points; there are 59 possible stars in the list. In- 
spection reveals that only 4 are no-field and they correspond to four distinct topologies : 

@@@@ / . 
w14 = 56 w 1 4  = 48 w , ~  = 96 w 1 4  = 80 

None of these can be embedded in the face-centred cubic lattice. Finally there is only 
one star with 14 edges and cyclomatic number 9 ;  it is hypermagnetic: the no-field 
list is closed. 

4.2.3. Magnetic graphs e < 13. The magnetic graphs are required up to e < 13; we 
have a complete listing of topologies of cyclomatic number 6 and we must supplement 
this. There are 81 possible stars with 7 vertices and 13 edges; 17 of these are first 
category magnetic. Only 4 of these 17 are embeddable in the face-centred cubic lattice : 

w 1 4  = 24 w I 4  = 24 w14 = 20 W 1 4  = 40 

There are only 3 other magnetic graphs with 13 edges embeddable in the face-centred 
cubic lattice, all second category : 

There are only two graphs of cyclomatic number 8 with 13 edges; only one is (first 
category) magnetic : 0 w 1 4  = 64 

It is not embeddable in the face-centred cubic lattice. The magnetic list is closed. 
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4.2.4. Hypermagnetic graphs e < 12. It remains to find any hypermagnetic graphs of 
cyclomatic number greater than or equal to 7 with e < 12. There are only five stars 
of 12 edges with cyclomatic number 7 ; two of these are hypermagnetic but they are 
not embeddable in the face-centred cubic lattice. There are no graphs of cyclomatic 
number 8 with 12 edges. The hypermagnetic list is closed and the star list should be 
complete. 

4.2.5. Loose-packed lisfing. To close a list appropriate to a loose-packed lattice the 
same general principles apply ; however larger values of r are accessible and no adequate 
list of loose-packed stars grouped by vertices is available. We have therefore used the 
general techniques proposed by Sykes et a1 (1966) and resorted to listing stars with 
strong embeddings to  close the loose-packed list. In fact for the simple cubic lattice at 
r = 18 there are no stars of cyclomatic number greater than 6 required for a,. 

5. Summary and conclusions 

We have studied the star-cluster expansion for the zero-field specific heat of the Ising 
model above the Curie temperature ; explicitly we have examined the problem of 
determining the coefficients in the expansion for the configurational free energy in 
zero field (on which the specific heat depends). 

We have developed a general method for the classification of stars together with a 
canonical description of their topologies and realizations. A study of the general 
properties of the weights has led to a format for a star list suitable for the derivation of 
successive coefficients a, (no-field stars to e < r ,  magnetic stars to e < r-1, hyper- 
magnetic stars to e < r - 2). From such lists the series given in I and I1 were derived. 

We have recently extended the expansion for the simple cubic lattice to r = 20 
(unpublished) at which order more than 5000 stars contribute to the final coefficient. 
It should prove possible to add more coefficients to all the lattices studied previously, 
using the general approach we have described. There remains, for projects of this 
magnitude, the problem of verifying in some independent way that the lists are com- 
plete. We shall describe one such method in a subsequent paper. 
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Appendix. The 53 no-field topologies of cyclomatic number ( I )  < 7 and their primary 
weights ( W) 

I = 1  1 = 3  1 = 4  I = 5  

-8 -4 +4 +4 w =  + 1  w = - 2  W =  -4 w =  + I 6  
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1 = 6  

w = +32 + 8  + 16 + 8  - 16 - 8  0 0 

w = -272 -32 + 64 - 8  - 32 + 64 + 32 - 8  

- 8  + 56 + 64 - 8  - 8  + 16 + 8  1 8  

+ 32 + 16 + 24 + 40 - 8  - 32 - 8  + 16 

+ 8  - 16 + 16 - 16 + 8  0 - 8  + 16 

+ 8  + 8  - 8  + 8  + 20 
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